# EQUATIONS OF GASDYNAMICS IN A NONEIERTIAL DEFORMABLE COORDNATE SYSTEM 

PMM Vol. 42, No. 5, 1978, pp. 841-847

V. I. GNESIN, V. L. GRODZINSKII, and G. A. SOKOLOVSKII (Khar'kov)<br>(Received December 5, 1977)


#### Abstract

Generalized equations of gasdynamics are obtained in differential form in a relative curvilinear deformable coordinate system and, also, in divergent form in a system of coordinates rotating at constant speed. It is shown that the known forms of gasdynamic equations are particular cases of generalized equations.


Two approaches are discernible in the determination of unsteady multidimensional gasdynamic flows in regions of complex geometry. In one of these the physical region is subdivided into separate subregions in each of which the flow is smooth and defined by a system of differential equations, and at whose boundaries relationships at shock waves and contact discontinuitiet are satisfied. In the second approach continuous calculation is used, in which equations of gasdynamics are of the form of conservation laws throughout the calculation region.

In the first method the calculation accuracy can be improved by separating flow singularities (shock waves, contact discontinuitien) relating their position to a syatem of curvilunear coordinates. The problem of further extension of the equations of gasdynamics presented in $[1,2]$ to the use of arbitrary deformable coordinate system arises in the case of unsteady flows.

In the continuous calculation method the equations of gasdynamics are of the form of conservation laws defined in Cartesian [1], orthogonal curvilinear [1,3], or arbitrary curvilinear [2,4] coordinate systems. An important particular case (e.g., in the theory of bladed machines) is that of the noninertial coordinate system rotating at constant angular velocity.

1. The arbitrary deformablecoordinatesystem. Along with the Cartesian system of coordinates $x^{i}$ with basis vectors $x_{i}=x^{i}$ we shall use a curvilinear deformable system of coordinates $q^{i}(x, t)$ with basis vectors $e_{i}$ and $e^{i}$ (the super- and subscripts relate to contravariant and covariant basis vectors $[2,5]$, respectively)

$$
\begin{align*}
& e^{i}=a_{\beta}^{i} x^{\beta}, \quad \mathbf{e}_{i}=b_{i}{ }^{\beta} \mathbf{x}_{\beta}  \tag{1.1}\\
& a_{\beta}^{i}=\frac{\partial q^{i}}{\partial x^{\beta}}, \quad b_{i}^{\beta}=\frac{\partial x^{\beta}}{\partial q^{i}}, \quad a_{\beta}^{i} b_{i}^{\beta}=\delta_{j}^{i} \tag{1.2}
\end{align*}
$$

where $a_{\beta}{ }^{i}$ and $b_{i}{ }^{\beta}$ are matrices of direct and inverse transformation of coordinates, and summation is carried out over recurrent indices.

The system of equations is formulated in terms of contravariant components of the absolute $\quad \mathrm{V}=V^{i} \mathrm{e}_{i}$, relative $\mathrm{V}_{\Gamma}=V_{r}{ }^{i} \mathrm{e}_{i}$ and carrier ( ${ }^{*}$ ) $\mathrm{V}_{\mathrm{e}}=V_{e}{ }^{i} \mathrm{e}_{i}$ velocity vectors.

In the system of coordinates $q^{i}$ the law of mass conservation in time $t$ for the fluid volume $\tau$ is of the form

$$
\begin{equation*}
\frac{d}{d t} \int_{\tau}^{2} \rho \sqrt{g} d q^{1} d q^{2} d q^{3}=0, \quad g=\operatorname{det}\left\|g_{i j}\right\| \tag{1.3}
\end{equation*}
$$

where $\rho$ is the medium density and $g$ is the determinant of the metric tensor $[2,5]$.
The product of coordinate differentials $d q^{1} d q^{2} d q^{8}$ in Eq. (1.3) may be considered as some elementary "volume" in the system of coordinates $q^{i}$ which is then assumed to be Cartesian (of course unrelated to the $x^{4}$-system). We apply to the lefthand side of (1.3) the rule of differentiation of an integral with respect to a moving volume [2] and obtain

$$
\begin{aligned}
& \frac{d}{d t} \int_{\tau} \rho \sqrt{g} d q^{1} d q^{2} d q^{3}= \\
& \int_{\tau}\left[\frac{\partial(\rho \sqrt{g})}{\partial t}+\operatorname{div}\left(\rho \sqrt{g} \mathbf{V}_{r}\right)\right] d q^{1} d q^{2} d q^{3}=0
\end{aligned}
$$

where $\partial / \partial t$ is a partial derivative with respect to time in the related coordinate system; the operation div is determined, as in Cartesian coordinates, by

$$
\operatorname{div}\left(\rho \sqrt{g} V_{r}\right)=\partial\left(\rho \sqrt{g} V_{r}^{i}\right) / \partial q^{i}
$$

Since the volume can be arbitrary, we write the equation of mass conservation as

$$
\begin{equation*}
\frac{\partial(\rho \sqrt{g})}{\partial t}+\frac{\partial\left(\rho \sqrt{\bar{g}} V_{r}^{i}\right)}{\partial q^{i}}=0 \tag{1.4}
\end{equation*}
$$

To have the equation of motion

$$
\begin{equation*}
a=-\frac{1}{p} \operatorname{grad} p \tag{1,5}
\end{equation*}
$$

in hydrodynamical form it is necessary to define the absolute acceleration $\quad \mathbf{a}=$ $d\left(V^{i} \mathrm{e}_{i}\right) / \dot{d} t$ in the system of coordinates $q^{i}$. When taking the total derivative with respect to time it is necessary to take into account that the basis vectors of a fluid

[^0]particle are represented in the form
$$
V^{i}=V^{i}[q(t), t], \quad e_{i}=e_{i}[q(t), t]
$$
where $q^{\alpha}=q^{\alpha}(t)$ is the equation of the trajectory of a specified fluid particle, i.e. $\quad \partial q^{\alpha} / d t=V_{r}^{\alpha}$. $\quad$ Hence
\[

$$
\begin{align*}
& \mathbf{a}=\frac{d\left(V^{i} e_{i}\right)}{d t}=\frac{d V^{i}}{d t} e_{i}+V^{i} \frac{d e_{i}}{d t}=  \tag{1.6}\\
& \quad\left(\frac{\partial V^{i}}{\partial t}+\frac{\partial V^{i}}{\partial q^{\alpha}} \frac{d q^{\alpha}}{d t}\right) e_{i}+V^{\alpha}\left(\frac{\partial e_{\alpha}}{\partial t}+\frac{\partial e_{\alpha}}{\partial q^{\beta}} \frac{d q^{\beta}}{d t}\right)= \\
& \quad\left[\frac{\partial V^{i}}{\partial t}+V_{\tau}^{\alpha}\left(\frac{\partial V^{i}}{\partial q^{\alpha}}+V^{\theta} \Gamma_{\alpha \beta}^{i}\right)\right] e_{i}+V^{\alpha} \frac{\partial e_{\alpha}}{\partial t}
\end{align*}
$$
\]

where $\Gamma_{\alpha \beta}^{i}$ are components of vector $\partial e_{\alpha \alpha} / \partial q^{\beta}$ in basis $e_{i}$ (Christoffel symbols).

To determine components of vector $\quad \partial e_{\alpha} / \partial t=c_{\alpha}^{j} e_{j}$ we differentiate the relationship $e^{i} \cdot e_{\alpha}=\delta_{\alpha}^{i}$ taking into account (1.1), i.e.

$$
\mathbf{e}^{i} \cdot c_{\alpha}^{j} \mathrm{e}_{j}+b_{\alpha}{ }^{p} \mathrm{x}_{p} \cdot \frac{\partial a_{\beta}^{i}}{\partial t} \mathrm{x}^{\beta}=0
$$

From this

$$
\begin{equation*}
c_{\alpha}^{i}=-\frac{\partial a_{\beta}^{i}}{\partial t} b_{\alpha}^{\beta} \tag{1.7}
\end{equation*}
$$

The substitution of (1.6) into (1.5) and the representation of the absolute velocity $V^{i}$ as the sum of the relative $V_{r}^{i}$ and the carrier $V_{\theta}^{i}$ velocities yields in the noninertial deformable system of coordinates the following equation of motion:

$$
\begin{gather*}
\left\{\left[\frac{\partial V_{r}^{i}}{\partial t}+V_{r}^{\alpha}\left(\frac{\partial V_{r}^{i}}{\partial q^{\alpha}}+V_{r}^{\beta} \Gamma_{\alpha \beta}^{i}\right)\right]+\left[\frac{\partial V_{e}^{i}}{\partial t}+V_{r}^{\alpha}\left(\frac{\partial V_{e}^{i}}{\partial q^{\alpha}}+\right.\right.\right.  \tag{1.8}\\
\left.\left.\left.V_{e}^{\beta} \Gamma_{\alpha \beta}^{i}\right)\right]+\left[\left(V_{r}^{\alpha}+V_{e}^{\alpha}\right) c_{\alpha}^{i}\right]\right\} e_{i}=-\frac{1}{\rho} \operatorname{grad} p
\end{gather*}
$$

where $c_{a}^{i}$ is determined by formulas (1.7).
To determine the contravariant components of the carrier velocity vector $V_{e}{ }^{i}$ in the system of coordinates $q^{i}$ we differentiate the identity $q^{i}=q^{i}[x(q, t), t]$ with respect to $t$. We have

$$
\frac{\partial q^{i}}{\partial t}=-\frac{\partial q^{i}}{\partial x^{f}} \frac{\partial x^{j}}{\partial t}
$$

Since $\partial x^{j}(q, t) / \partial t$ is the contravariant component of the carrier velocity vector in the system of coordinates $x^{i}$, hence, owing to the tranaformation of
vector componeats when passing to another coordinate system, the quantity $\partial q^{i}(x$, $t) / \partial t \quad$ taken with the minus sign is the covariant component of the carrier velocity vector in the system of coordinates $q^{i}, i, e$.

$$
V_{e}^{i}=-\partial q^{i}(x, t) / \partial t
$$

In the particular case of $\quad V_{e}=\mathbf{c o n s t} \quad$ and $\quad c_{\alpha}{ }^{i}=0 \quad$ from (1.8) we obtain the known form of equations of motion in the inertial undeformable coordinate system

$$
\left(\frac{\partial V^{i}}{\partial t}+V^{\alpha} \frac{\partial V^{i}}{\partial q^{\alpha}}+V^{\alpha} V^{\beta} \Gamma_{\alpha \beta}^{i}\right) \mathrm{e}_{i}=-\frac{1}{p} \operatorname{grad} p
$$

Let us consider an undeformable coordinate system rotating at angular velocity $\omega$. In that case the expression in the fint set of brackets in (1.8) represents the total time derivative of the relative velocity in the respective coordinate system, i. e. $\left(d V_{r}{ }_{r}^{\text {² }} \Theta_{i}\right.$ $/ d t)_{r}$ is the relative acceleration. The expression in the second set of brackets represents the total time derivative of the carrier velocity

$$
\begin{align*}
& {\left[\frac{\partial V_{e}^{i}}{\partial t}+V_{r}^{\alpha}\left(\frac{\partial V_{e}^{i}}{\partial q^{\alpha}}+V_{e} \beta \Gamma_{\alpha \beta}^{i}\right)\right] e_{i}=\left(\frac{d V_{e}^{i} e_{i}}{d t}\right)_{r}=}  \tag{1.9}\\
& \omega \times\left(\frac{d \mathbf{r}}{d t}\right)_{r}+\left(\frac{d \omega}{d t}\right)_{r} \times \mathbf{r}=\omega \times \mathbf{V}_{r}+\varepsilon \times \mathbf{r} \quad\left(\mathbf{V}_{e}=\omega \times \mathbf{r}\right)
\end{align*}
$$

where $\mathbf{r}$ is the radius vector and $\varepsilon$ is the angular acceleration.
We transform the last term in the left-hand side of (1.8)

$$
\begin{align*}
& \left(V_{r}^{\alpha}+V_{e}^{\alpha}\right) c_{\alpha}^{i} e_{i}=\left(V_{r}^{\alpha}+V_{e}^{\alpha}\right) \frac{\partial e_{\alpha}}{\partial t}=  \tag{1.10}\\
& \quad\left(V_{r}^{\alpha}+V_{e}^{\alpha}\right)\left(\omega \times e_{\alpha}\right)=\omega \times V_{r}+\omega \times V_{t}
\end{align*}
$$

and, substituting (1.9) and (1.10) into (1.8), we obtain

$$
\begin{equation*}
\frac{d \mathbf{V}_{r}}{d t}+2 \omega \times \mathbf{V}_{r}+\omega \times \omega \times \mathbf{r}+\varepsilon \times \mathbf{r}=-\frac{1}{\rho} \operatorname{grad} p \tag{1.11}
\end{equation*}
$$

When $\varepsilon=0$ we have the equation of motion in the system of coordinates rotating at constant angular velocity [6].

For a non-heat-condurcting gas the law of energy conservation is equivalent to the conservation of entropy by a fluid particle in regions of smooth flow into which the whole considered region is divided by the introduced relative coordinate system

$$
\begin{equation*}
\frac{\partial S}{\partial t}+V_{r}^{i} \frac{\partial S}{\partial q^{i}}=0 \tag{1,12}
\end{equation*}
$$

The system of equations of continuity (1.4), motion (1.8), and conservation of energy (1.12) is closed by the equation of state.
2. Divergentequationsofgasdynamicsinacurvilinearcoordinatesystemrotatingatconstant velocit $y$. The divergent form of the equation of mass conservation in an arbitrary coordinate syatern is of the form (1.4).

The law of momentum conservation in time $t$ for the fluid volume $\tau$ may be represented in the integral form

$$
\begin{equation*}
\frac{d}{d t} \int_{t} \rho \mathbf{V} d \tau=-\int_{s} p \mathbf{n} d s \equiv-\int_{\tau} \operatorname{grad} p d \tau \tag{2.1}
\end{equation*}
$$

where $n$ is the unit vector of the external normal to the $\boldsymbol{s}$-surface that bounds the fluid volume $\tau$.

We denote by $a, a_{m}$ and $a_{r}=d V_{r} / d t$ the abwolute, carrier, and relative accelerations, respectively, and, taking into account (1.3), transform the first integral in (2.1) as follows:

$$
\begin{gather*}
\frac{d}{d t} \int_{\tau} \rho \mathbf{V} d \tau=\int_{\tau} \frac{d V}{d t} \rho d \tau=\int_{\tau} \rho\left(\mathbf{a}_{s}+a_{r}+2 \omega \times \mathbf{V}_{r}\right) d \tau  \tag{2.2}\\
\int_{\tau} \rho \mathbf{a}_{r} d \tau=\int_{\tau} \rho \frac{d \mathbf{V}_{r}}{d t} d \tau=\frac{d}{d t} \int_{\tau} \rho \mathbf{V}_{r} d \tau=\int_{\tau} \frac{\partial}{\partial t}\left(\rho \mathbf{V}_{r}\right) d \tau+ \\
\int_{s} \rho \mathbf{V}_{r}\left(\mathbf{V}_{r} \mathbf{n}\right) d s=\int_{\tau}\left[\frac{\partial\left(\rho \mathbf{V}_{r}\right)}{\partial t}+\operatorname{div}\left(\rho \mathbf{V}_{r} \mathbf{V}_{r}\right)\right] d \tau
\end{gather*}
$$

where $\rho \mathbf{V}_{r} \mathbf{V}_{r}$ is a tensor dyad.
The equation of momentum conservation is obtained from (2.1) with allowance for (2.2) in the vector form

$$
\begin{equation*}
\partial / \partial t\left(\rho \mathbf{V}_{r}\right)+\operatorname{div}\left(\rho \mathbf{V}_{r} \mathbf{V}_{r}\right)+\operatorname{grad} p=-\rho a_{\theta}-2 \rho \omega \times \mathbf{V}_{r} \tag{2.3}
\end{equation*}
$$

The law of energy conservation for the fluid volume $\tau$ in integral form is

$$
\begin{equation*}
\frac{d}{d t} \int_{\tau}\left(\rho \varepsilon+\rho \frac{V^{2}}{2}\right) d \tau=-\int_{\tau} p(\mathbf{V n}) d s \tag{2.4}
\end{equation*}
$$

where $\varepsilon$ is the intemal energy.
Toking into account (1.5) we transform the integrals in (2.4) as follows:

$$
\begin{aligned}
& \frac{d}{d t} \int_{\tau} \rho \frac{V^{2}}{2} d \tau=\int_{\tau} \rho \frac{d(\mathbf{V V})}{2 d t} d \tau=\int_{\tau}^{\tau} \rho\left(\mathbf{V}_{\mathrm{a}}\right) d \tau= \\
& \quad \int_{\tau}^{1} \rho\left[\left(\mathbf{V}_{r}+\mathbf{V}_{e}\right)\left(a_{e}+\mathbf{a}_{r}+2 \omega \times \mathbf{V}_{r}\right)\right] d \tau= \\
& \int_{\tau} \rho\left[\mathbf{V}_{r} \mathbf{a}_{e}+\mathbf{V}_{r} \mathbf{a}_{r}+\mathbf{V}_{e} \mathbf{a}+2 \mathbf{V}_{r}\left(\omega \times \mathbf{V}_{r}\right)\right] d \dot{\tau} \\
& \mathbf{V}_{r}\left(\omega \times \mathbf{V}_{r}\right)=0, \quad \mathbf{V}_{r} \mathbf{a}_{r}=\frac{1}{2} \frac{d \mathbf{V}_{r}^{2}}{d t}, \quad \mathbf{V}_{e} \mathbf{a}=-\mathbf{V}_{e} \cdot \frac{1}{\rho} \operatorname{grad} p
\end{aligned}
$$

For the system of coordinates $q^{i}$ rotating at constant angular velocity $\omega$ (the metric $g_{i j}$ is independent of time) we have

$$
a_{e}=-\operatorname{grad} u^{2} / 2
$$

where $u$ is the linear velocity of points of the $q^{i}$-coordinate system. From (1.4) we then have

$$
\partial \rho / \partial t+\operatorname{div}\left(\rho \mathbf{V}_{r}\right)=0
$$

which yields

$$
\begin{aligned}
& \rho V_{r}^{\prime} \mathbf{a}_{e}=-\rho V_{r} \operatorname{grad} \frac{u^{2}}{2}=-\operatorname{div}\left(\rho V_{r} \frac{u^{2!}}{2}\right)+ \\
& \frac{u^{2}}{2} \operatorname{div}\left(\rho V_{r}\right)=-\operatorname{div}\left(\rho V_{r} \frac{u^{2}}{2}\right)-\frac{u^{z}}{2}\left(\frac{\partial \rho}{\partial t}\right)_{q^{i}}= \\
& -\operatorname{div}\left(\rho V_{r} \frac{u^{2}}{2}\right)-\left(\frac{\partial}{\partial t} \rho \frac{u^{2}}{2}\right)_{q^{i}} \\
& \int_{s} p(\mathbf{V n}) d s=\int_{\boldsymbol{\tau}} \operatorname{div}(p \mathbf{V}) d \tau=\int_{\boldsymbol{\tau}}\left[\operatorname{div}\left(p \mathbf{V}_{r}\right)+\operatorname{div}\left(\rho \mathbf{V}_{\mathrm{e}}\right)\right] d \tau= \\
& \int_{\tau}\left[\operatorname{div}\left(p V_{r}\right)+p \operatorname{div} V_{e}+V_{e} \operatorname{grad} p\right] d \tau \\
& \operatorname{div} \mathrm{~V}_{e}=\operatorname{div}(\omega \times \mathbf{r})=\mathbf{r} \cdot \operatorname{rot} \omega-(\omega \cdot \operatorname{rot} \mathbf{r}) \equiv 0 \\
& \int_{\tau} \rho V_{r} \mathrm{a}_{r} d \tau=\int_{\tau} \rho \frac{1}{2}\left(\frac{d V_{r}^{2}}{d t}\right)_{q^{i}} d \tau=\frac{d}{d t}\left(\int_{\tau} \rho \frac{V_{r}^{2}}{2} d \tau\right)_{q^{i}}= \\
& \int_{\tau} \frac{1}{2} \frac{\partial}{\partial t}\left(\rho V_{r}\right)_{q}{ }^{i} d \tau+\int_{s} \rho \frac{V_{r}^{2}}{2}\left(V_{r} \mathbf{n}\right) d s= \\
& \int_{\tau}\left[\left(\frac{\partial}{\partial t} \rho \frac{V_{r}^{2}}{2}\right)_{q^{i}}+\operatorname{div}\left(\rho V_{r} \frac{V_{r}^{2}}{2}\right)\right] d \tau
\end{aligned}
$$

$$
\begin{gathered}
\frac{d}{d t} \int_{\tau} \rho \varepsilon d \tau=\int_{\tau}\left(\frac{\partial \rho \varepsilon}{\partial t}\right)_{q^{i}}+\int_{s} \rho \varepsilon\left(\mathbf{V}_{r} \mathbf{n}\right) d s= \\
\int_{\tau}\left[\left(\frac{\partial \rho \varepsilon}{\partial t}\right)_{q^{i}}+\operatorname{div}\left(\rho \varepsilon \mathbf{V}_{r}\right)\right] d \tau
\end{gathered}
$$

Substituting obtained expressions into (2.4) and taking into account the arbitrariness of the volume of integration $\tau$, we obtain the equation of energy of the divergent form

$$
\begin{equation*}
\frac{\partial E}{\partial t}+\operatorname{div}\left[(E+p) V_{r}\right]=0, \quad E=\rho\left(\varepsilon+\frac{V_{r}^{2}-u^{2}}{2}\right) \tag{2.5}
\end{equation*}
$$

In the case of three space coordinates the symbolic vector form of divergent equations of unstable gasdynamics in an arbitrary moainertial coordinate system rotating at constant velocity is

$$
\begin{align*}
& \partial f / \partial t+\nabla_{1} F_{1}+\nabla_{2} F_{2}+\nabla_{3} F_{3}+H=0  \tag{2.6}\\
& f=\left|\begin{array}{c}
\rho \\
\rho V^{2} \\
\rho V^{2} \\
\rho V^{3} \\
E
\end{array}\right|, \quad F_{1}=\left|\begin{array}{c}
\rho V^{1} \\
\rho V V^{2}+g^{11} p \\
\rho V^{2} V^{2}+g^{12} p \\
\rho V V^{2}+g{ }^{13} p \\
(E+p) V^{2}
\end{array}\right| \\
& F_{2}=\left|\begin{array}{c}
\rho V^{2} \\
\rho V^{2} V^{2}+g^{n 2} p \\
\rho V^{2} V^{2}+g^{22} p \\
\rho V^{2} V^{2}+g^{23} p \\
(E+p) V^{2}
\end{array}\right|, \quad F_{3}=\left|\begin{array}{c}
\rho V^{3} \\
\rho V^{2} V^{2}+g^{32} p \\
\rho V^{2} V^{2}+g^{22} p \\
\rho V^{2} V^{3}+g^{23} p \\
(E+p) V^{2}
\end{array}\right| \\
& H=\left|\begin{array}{c}
0 \\
\rho a_{e}^{1}+\frac{2}{\sqrt{g}} \rho\left(\omega_{2} V^{2}-\omega_{3} V^{2}\right) \\
\rho a_{e}^{2}+\frac{2}{\sqrt{g}} \rho\left(\omega_{3} V^{2}-\omega_{1} V^{2}\right) \\
\rho a_{e}^{a}+\frac{2}{\sqrt{g}} \rho\left(\omega_{1} V^{2}-\omega_{2} V^{2}\right) \\
0
\end{array}\right|
\end{align*}
$$

In an orthogonal syatem of coordinates we have $g_{i t}=H_{i}{ }^{2} \quad$ (no summation with respect to $i$ ), $g_{i k}=0$, and $g=H_{1}{ }^{2} H_{2}{ }^{2} H_{3}{ }^{2}\left(H_{1}, H_{2}\right.$, and $H_{3}$ are Lamé coefficients). As the result of trangormations, system (2.6) can be represented in the form of equations of conservation of mass, momentum, and energy

$$
\begin{align*}
& \frac{\partial\left(H_{2} H_{2} H_{3 P}\right)}{\partial t}+\frac{\partial}{\partial x_{x}^{j}}\left(\frac{H_{2} H_{2} H_{3}}{H_{j}} \rho V_{j}\right)=0  \tag{2.7}\\
& \frac{\partial}{\partial t}\left(H_{1} H_{2} H_{3} \rho V_{i}\right)+\frac{\partial}{\partial x^{j}}\left[\frac{H_{1} H_{2} H_{3}}{H_{j}}\left(\delta_{i j} p+\rho V_{i} V_{j}\right)\right]=
\end{align*}
$$

$$
\begin{aligned}
& \quad \frac{H_{1} H_{2} H_{8}}{H_{i} H_{j}} \frac{\partial H_{j}}{\partial x^{i}} \rho V_{j} V_{j}+p \frac{\partial}{\partial x^{i}}\left(\frac{H_{1} H_{2} H_{3}}{H_{i}}\right)- \\
& \quad \frac{H_{1} H_{2} H_{3}}{H_{i} H_{j}} \frac{\partial H_{i}}{\partial x^{j}} \rho V_{i} V_{j}-H_{i} H_{1} H_{2} H_{3} \rho\left(\frac{a_{e i}}{H_{i}}+2 e^{i j k} H_{j} H_{k} \omega_{j} V_{k}\right) \\
& \frac{\partial\left(H_{1} H_{2} H_{8} E\right)}{\partial t}+\frac{\partial}{\partial x^{j}}\left[\frac{H_{1} H_{2} H_{3}}{H_{j}}(E+p) V_{j}\right]=0 \\
& (i, j, k=1,2,3)
\end{aligned}
$$

where $e^{i j k}$ is the Levi-Civita tensor.
The system of Eqs. (2.7) is closed by the equation of state.
REFERENCES

1. Godunov, S. K., Zabrodin, A. V., Ivanov., M. Ia., and others, Numerical Solutions of Multidimensional Problems of Gasdynamics. Moscow, "Nauka", 1976.
2. Sedo v, L. I., Mechanics of Continuous Medium, Vol 1. Moscow, "Nauka". 1973. (see also English translation, Pergamon Press, Book No. 09878, 1965).
3. Culter, P., Computation of three-dimensional inviscid supersonic flows. Lecture Notes, Phys. , Vol. 41, No. 1, 1975.
4. Vinokur, M., Conservation equations of gasdynamics in curvilinear coordinate systems. J. Comput. Phys., Vol. 14, No. 2, 1974.
5. MacConne 1, A., Introduction to Tensor Analysis. Moscow, Firmatgiz, 1963.
6. Zhukovskii, M. I. , (Joukowaki) Aerodynamic Calculation of Flow in Axial Turbines. Leningrad. "Mashinostroenie", 1976.

[^0]:    *) Translator's note: In turbomachinery usually called the peripheral velocity.

