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Generalized equations of gasdynamics are obtained in differential form in a 
relative curvilinear deformable coordinate system and, also, in divergent 
form in a system of coordinates rotating at coWant speed. It is shown that 
the known forms of gasdynamic equations are particular cases of generalized 
equations. 

Two approaches are discernible in the determination of unsteady multidimenaionai 
gasdynamic flows in rcgioor of complex geometry. In one of these the physical region 
is subdivided into separate subregions in each of which the flow is srno&h and &f&xl 
by a system of differential equation, and at whotc bouudaries relaUon&ips at shock 
waves and contact discc&nuiUu are satisfied. In the second appruach cOOtiOU(llls 
calculation is used, in which equations of gasdynamics are of the form of couaervation 
laws throughout the calculation region. 

In the first method the calculati~ accuracy can be improved by separating flow 
siagulaxit& (shock waves, collztrct d&x&&&W) r*Mng their p&&an to a system 
of cuzvilfacror coordinates. The problem of furthrar utapoioa of the of gas- 
dynamics presented in [l, 23 to the use of arbitrary d&rmable coo&i&e @em arises 
in the case of unsteady flows. 

In the continuous calculation method theqatioimof gasdynamics are of the form 
of conservation laws defined in Cartesian Cl], orthogowl curvilinear Et 3], or arbitr- 
ary curvilinear [2,4] coordinate systems. An important particular case (e. g., in the 
theory of bladed machines) is that of the n&ne&al coordiuate system rotating at 
constaut angular velocity. 

1. The arbitrary deformable coordinate system. 
Along with the Q&&an systemof coc&wter ti with barb vectors xt = xi we 
shall use a curvilinear deformable system of coordiuates q’ (t, t) with Barr 

vectors e1 and ei (the super- and subscripts relate to contravariurt rad covariant 
basis vectols [2,5], respectively) 

ei = a$xB, q = biSxg (1.1) 

c$ = .f$ , bi8 = $! , agibi8 = 6; (1.2) 
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where asi and b,B are matrices of direct and inverse ~a~~~~~ of coordin- 
ates, and summation is carried art over recurrent indices, 

The system of equations is formulated in terms of contravariant components of the 
absolute v = vet, relative V, = V,*e, and carrier (3 V, = V,*e, velocity 
vectors. 

In the system of coordinates q” the law of mass conservation in time t for the 
fluid volume 7 is of the form 

(1.3) 

where p is the medium density and g L the determinant of the metric tensor [Z, 51. 
The product of coordinate differentfals ~~~ in Eq. (1.3) may be considtr- 

ed as some elementary “volume” in the system of coordinates qi which is then assum- 
ed to be Cartesian (of cause unrelated to the x’ -systerr& We apply to the left- 
hand side of ( 1.3) the rule of dffftrentf atton of an integral with respect to a moving 
volume [2] and obtafn 

where @ / a# is a partial derivatfve with respect to time in the related coordinate 
system; the operation div is determined, as in Cartesian coordinates, by 

Since the volume can be arbitrary, we mite the equatiou of mass conservatton as 

(1.4) 

To have the equation of motion 

a= -$-gradp (1.5) 

fn hy&~y~~c~ form it is nece~~ry to define the absolute acctltratian a = 
d (Vie,) / dt in the system of coordinates (Ii. When taktng the total derivative with 
respect to time it is necessary to take into account that the basis vectors of a fluid 

l ) Translator’s note: In turbomachfnery usually called the perfpheral velocity. 
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particle are represented in the form 

vf = v”” rq (f), fl, 
where qx -r p (t) is the equation 
i. e. a$i / dt = Vrs. Hence 

et = et rq (t), tl 

of the trajectory of a specified fluid particle, 

From tbfs 

(I.71 

Tbc substitution of (1.6) into (1.5) and the repsesenlation of the ab8Wte velocity 
P ad tbesum of the nlative 7,” and the car&r Y,’ v&cities yfeid8 in the 

nonWrtfal deformable system of coord&Wes the followtng equation of motiom 

where %* is de&mined by formulas (1,7), 
To &tumfDe the contravariant components of the carrier velocity vector V8’ 

in the system of coordinatea (L” we dlffcmntkte the idtntity qi = q* [r (q, t), t] 
with reapcct to t . We have 

Since iii6 {q, t) / dt is the contravariant component of the carrier velocity 
vector k the q@em of e 2, hence, OwBkg b the @on of 
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vector components when passing to another coordinate system, the quantity a4 e, 
t) / at taken with the minus sign is the covariant componeut of the carrier velocity 
vector iu the system of coordinates qi I i. e. 

v,i = - i%f (GE, f) I at 

In the particular case of V, = const and c~* = 0 from (1.8) we obtain 
the known form of equations of motion in the inertial undeformable coordinate system 

( d 
at+ Va$+V=V31’+i= -+gradp 

Let us consider au undeformable coordinate system rotating at angular velocity co. 
In that case the expression in the first set of brackets iu (I. 8) represents the total time 
derivative of the relative velocity iu the respective coordinate system, i. e. (dV,b, 
/ dt), is the relative acceleration, The expressiaa fn the second set of brackets 

represents the total time derivative of the carrier velocity 

[!g + v$$ +v*sr$#?i =(q&)/= (1.9) 

cex(~),+(~)Ixr=o,xV,+exr W,=@wr) 

where r is the radius vector and e; is the angular acceleration. 
We transfrxm the last term in the let%hand side of (1.8) 

(l-y + v*y ca%% = (Vr” + v*y 2 = 
(v,a+~,~)(u,x~)=~xv,+cuxv‘ 

( 1.10) 

and, m~U~~g (I. 9) and f 1.10) into ( 1.81, we obtain 

~+~xV,+rxcoxr+8xr=--~dp a. 111 

whcp 8s 0 we have the equation of motion in the system of coordinates rotat- 
ing at coustant angular velocity [6x 

For a n~-h~t-~~c~g gas the law of energy conservatiax is ectufvalent to the 
couservation of entropy by a fluid particle in regions of smooth flow into which the 
whole considered region is divided by the introduced relative coordiuate system 

(1.12) 
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The system of eqWiom of coW.Wty (1.4). moMon (1.8). and comsrvatioa of 
@=rgy (I.121 is closed by the ~tion of state. 

2. Divergent equations of gasdynamics in a curvi- 
linear coordinate system rotating at constant veloc- 
f t y. The divergent form of the equatton of matt con~~~Mon in an arbitrary co- 
ordinate system is of the form (1.4). 

The law of momentum mnusrva~on in time t for the f&d volume 7 may be 
rep-ted in the fntegral form 

where It fstiteunitv0ctorofthtextemaXnormaltoihe s-mxfactthatbamdsthe 
fluid volume ‘r. 

We deUe by a, a, and ar = dV, / at the abmattc, CU*, and rtl0t.w 
acccleraticm, rcrpacuvcly, and, t&&g iat0 account fl. 3), trapfform the finit 
integral in (2.1) as fo%iowr: 

where pV,V, is a tensor dyad. 
The equaffon of momentum 

for (2.2) in the vector form 
conservation is obtained from (2.1) with allowance 

4 I at W,) + div WV,) + grad P ref --pa, - zper x V, (2.3) 

The law of energy ~~ffat~ for the chid vottlme z in integral form is 

where 8 is the internal energy. 
Taking &%toaccount (1.5) we transform the intcg?als in (2.4) as follows: 



For the system of coordinates q* rotafbg at constant qubr vebcity e (the 
lIi&iC gij iS ind8pwudent Of trmt) WC haVC 

a, = -graduz/2 

where u is the linear velocity of points of t&e $ -coordinate system, Fmn ( 1.4) 
we~~ye 

ap / at + div (pV,) = 0 

which yields 
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Subrtltuting obtained exprtrrfau into (2.4) and taking into account the arbitrarin- 
ess of the volume of integration 
form 

z, we obtain the equation of cnesgy of the divergent 

vp - u2 ~+divI(E+p)V,l -0, E= p(e+. 2 ) (2.5) 

Inthecaseoftbreespacac 
ions of mstabh gasdynamics in 
caMtent velocity is 

at- 
t 

af I at + V,F, + V,P, + V,F, + H = 0 (2.6) 

PVS 

Pw+ guP 
Pm + PP 
PW + PP 
w+ P)P 

Iu an orthogonal *ystem of coordinates we have gii = ZTla (no summation 
With I'BptXZt to t), gfl, = 0, and g = &a&*&* (fl,, &, and H, are Lami 
coefficients). As the result of transf~mattonr, system (2.6) can be qre~&~I in the 
form of equations of conservation of ma&, mom&kun, and energy 

(2.V 
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(4 i, k = 1, 2, 3) 

&k is the Levi-Civita WOK., 

The system of Eqs. (2.7) is clored by the equation of state. 
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