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Generalized equations of gasdynamics are obtained in differential form in a
relative curvilinear deformable coordinate system and, also, in divergent
form in a system of coordinates rotating at coustant speed. It is shown that
the known forms of gasdynamic equations are particular cases of generalized
equations.

Two approaches are discemible in the determination of unsteady multidimensional
gasdynamic flows in regions of complex geometry. In one of these the physical region
is subdivided into separate subregions in each of which the flow is smooth and defined
by a system of differentfal equations, and at whose boundaries relationships at shock
waves and contact discontinuities are satisfied. In the second approach continuous
calculation is used, in which equations of gasdynamics are of the form of conservation
laws throughout the calculation region.

In the first method the calculation accuracy can be improved by separating flow
singularities (shock waves, contact discontinuities) relating their position to a system
of curvilinear coordinates. The problem of further extension of the equations of gas-
dynamics presented in [1, 2] to the use of arbitrary deformable coordinate system arises
in the case of unsteady flows.

In the continuous calculation method the.equations of gasdynamics are of the form
of conservation laws defined in Cartesian [1], orthogonal curvilinear [1,3], or arbitr-
ary curvilinear [2, 4] coordinate systems. An important particular case (e.g., in the
theory of bladed machines) is that of the noninertial coordinate system rotating  at
constant angular velocity,

1. The arbitrary deformable coordinate system,
Along with the Cartesian system of coordinates z' with basis vectons X, = x! we
shalluse a curvinneat deformable system of coordinates q (z, t) with  basis
vectors e, and ' (the super- and subscripts relate to contravariant and covariant
basis vectors [2, 5], respectively)

el = agixﬁ e, = iﬁxﬁ (1.1)
) 9zP ; ;
a’ﬂ = aqﬂ biﬁ = 'é—q':i' ) aﬁlbiﬂ == 6.7'1 (1.2
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where api and b8 are matrices of direct and inverse transformation of coordin-
ates, and summation is carried out over recurrent indices,

The system of equations is formulated in terms of contravariant components of the
absolite  V = Vg, relative V, = V,'e, and carrier(") V, = V.le, velocity
vectors,

In the system of coordinates ' the law of mass conservation in time ¢ for the
fluid volume 7 is of the form

d ¢ -
2-\PVidgtdgidg® =0, g = det| gyl L.3)
T

where o is the medium density and g is the determinant of the metric tensor [2, 5].

The product of coordinate differentials dg'dg®dg® in Eq. (1.3) may be consider-
ed as some elementary " volume™ in the system of coordinates q* which is then assum-
ed to be Cartesian (of course unrelated to the z' -system), We apply to the left-
hand side of (1. 3) the rule of differentiation of an integral with respect to 2 moving
volume [2] and obtain

\eVidgdgrdg =

T

([28YE 4 aiv (pV/aV.) | dg*dgrde =0

T

where @/ §t is a partial derivative with respect to time in the related coordinate
system; the operation div is determined, as in Cartesian coordinates, by

div (p ﬁvr) =4 (p Vg—Vri) / 9¢".

Since the volume can be arbitrary, we write the equation of mass conservation as

26Vy) 2V, ,
ot ) + aqi =0 (1.4

To have the equation of motion
a=-—---;—gradp (1.5)
in hydrodynamical form it is necessary to define the absolute acceleration a =

d (Vie,) / dt in the system of coordinates ¢'. When taking the total derivative with
respect to time it is necessary to take into account that the basis vectors of 2 fluid

*)  Translator's note: In turbomachinery usually called the peripheral velocity.
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particle are represented in the form
Vi=Vilg(t),tl, e =elg(),tl

where ¢ = ¢> () is the equation of the trajectory of a specified fluid particle,
Le. 9g/dt=1V & Hence

d(m‘) dV‘ e -+ d"* - (1.6)

<av‘ ZV; cg )ea+V (%-.;_!_io% aqs)
K

LAy (3= q,-z-wrw)] P

where I‘;ﬁ are components of vector e, / fgP in basis e, (Christoffel
symbols),

To determine components of vector deg / 0t = c,'e; we differentiate the
relationship e'.e, == §,' taking into account (1. 1), i.e.

) i
e'.ca'e; 4 baPx,- -%—xﬁ-:()
From this
o
ol = —--:;Lba (.7

The substitution of (1, 6) into (1, 5) and the representation of the absolute velocity
V! as the sum of the relative V,' and the carrier V,'! velocities yields in the
noninertial deformable system of coordinates the following equation of motion:

v} v}
e O

V.BI‘@)] + (V2 + V& ey j}e; = --- grad p

where ¢! is determined by formulas (1, 7). )
To determine the contravariant components of the carrier velocity vector V,}

in the system of coordinates g' we differentiate the identity ¢' = ¢* [z (g, ?), ]
with respect to ¢ . We have

aq* o o8s

T 8t

Since 9z’ (g, £) / 6t is the contravariant component of the carrier velocity
vector in the system of coordinates z', hence, owing to the transformation  of



Equations of gasdynamics 911

vector components when passing to another coordinate system, the quantity  dg* (z,
t) /8t taken with the minus sign is the covariant component of the carrier velocity
vector in the system of coordinates ¢t , i.e.

Vi= —0d¢ (z,8)/ 8t

In the particular case of V, = const and ¢, = 0 from (1.8) we obtain
the known form of equations of motion in the inertial undeformable coordinate system

( L Va.-—-;-v“vﬁrap)e, = -—-%—gradp

Let us consider an undeformable coordinate system rotating at angular velocity @ .
In that case the expression in the finst set of brackets in (1, 8) represents the total time
derivative of the relative velocity in the respective coordinate system, i.e. (dV,%e,
/ dt), is the relative acceleration, The expression in the second set of brackets
represents the total time derivative of the carrier velocity

o} v} av e (1.9)
[ +V°‘( +Var.,,,)] (._a,_g*)r=

mx(‘z) +(—?:—-)rxr=n)><v,.+e><r Ve=0 X1

where r is the radius vector and ¢ is the angular acceleration,
We transform the last term in the left-hand side of (1.8)

(1.10)
Vo + VD eales = (V,5 4+ V.9 S
VetV (@ Xxe)=0Xx V. +0xV,
and, substituting (1.9) and (1. 10) into (1, 8), we obtain
_":.+2a><v,+e>xe>><r+e><r=__§_gmdp (111)

When & == 0 we have the equation of motion in the system of coordinates rotat-
ing at constant angular velocity [6].

For a non-heat-condircting gas the law of energy conservation is equivaient to the
conservation of entropy by a fluid particle in regions of smooth flow into which the
whole considered region is divided by the introduced relative coordinate system

Zf +vi 25 =0 (1.12)
agt
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The system of equations of continuity (1.4), motion (1,8), and conservation of
energy (1, 12) {s closed by the equation of state,

2, Divergent equations of gasdynamics ina curvi-
linear coordinate system rotating at constant veloc-
ity. The divergent form of the equation of mass conservation in an arbitrary co-
ordinate system is of the form (1.4),

The law of momentum conservation in time ¢ for the finid volume T may be
represented in the integral form

%Sder:—-Spndsa»—-ngdpdr 2.1
T T

s

whete B s the unit vector of the external normal to the 8 -surface that bounds the
fluid volume *.

We denote by @, 8, and a,= dV,/dt the absolute, carrer, and relative
accelerations, respectively, and, taking into account (1.3), transform the  flrst
integral in (2. 1) as follows:

(2.2)
Sdet_.s pdtz:§p(a,+a,+2mxv,)dt
Spa,dt Sp - S \ dt:-.-ST(pV,)dr-i—
{0V, (V.a) ds = S[ + div (pV,V) | dv

where PV.V, isa tensor dyad.
The equation of momentum conservation is obtained from (2, 1) with allowance

for (2. 2) in the vector form

alat(pVv,) + div (pV,V,) 4 grad p = —pa, — 2pa@ X V, (2.9)

The law of energy conservation for the fluid volume 7 in integral form is

2 (oo +o ) dv = —{p(Va)as (2.4
1 <

where ¢ is the intemal energy.
Taking intoaccount (1, 5) we transform the integrals in (2. 4) as follows:
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d V2 d(vy
"E;SP-—d -Sp édt )d‘rMSp(Va)d'c==
%

T

pI(Vr+ Vo) (ae + ar+ 20 X V,)]dv =

\PIVia,+ Voo, + Va+ 2V, (0 x V) d
<

dv ?

ViexV)=0, Va,=-3=I, Va=—V,.>gradp

For the system of coordinates ¢' rotating at constant angular velocity @ (the
metric g,; is independent of time) we have

a, = —grad u?/2

where u is the linear velocity of points of the g'-coordinate system. From (1.4)
we then have

dp / 8t + div (pV,) =0

which yields

oVia, = —pV, grad o= = — div (V. 5%) +
S aiv (V) = — div (V. ) — () 5=
— div (o¥2 7) ~ (G 7),
{ p(Vm)ds = § div (pV)dr =§ [div (pV,) + div (pV,)] dT =
6 S [div (pV,) + pdivV,+ V, grad p] dv
divTV =div(® X t) = r-rot® — (@-rot r)=0

59%%89 () ar =g (o F o) -

=V, ),,idv+g j—(V,n)dsm

(02 el )

”

A
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e dt = S(ég;)q‘ + Spe(V,n) ds =

8

Y:
S [('%ii)qi + div (PGV,-)] dv

Substituting obtained expressions into (2.4) and taking into account the arbitrarin-
ess of the volume of integration 7, we obtain the equation of energy of the divergent
form

3E . VE—us
G AWIE+D V=0, E=p(e+275) @

In the case of three space coordinates the symbolic vector form of divergent equat-
ions of unstable gasdynamics in an arbitrary noninertial coordinate system rotating at
constant velocity is

af/at+V1F1+v’F2+VaFa+H=0 (2~6)
p py?
pvt pV/L 4 glip
, Fy=eVWi4 gtp
pv? pyVIv3 4 gi3p
E (E+p)?
pv3 pV3
PV Lgp PV 4 gip
Fy=|oV?V2 4 gBp | Fy=| pVV:+ g¥p
pVIVE - gBp pYIVe + g®p
(E+p)Vve (E+p)V?
0

2
paf + 7= p (0" — asb?)
2
H =} pa?+ Vi (@aV'1 — 0y V)

2
pa? + Vs P (V2 — o)
0

In an orthogonal system of coordinates we have g;; = H,® (no summation
with respect to i), g = 0,and g = H,*H,*H;* (H,, H,, and H, are Lamé
coefficients), As the result of transformations, system (2. 6) can be represented in the
form of equations of conservation of mass, momentum, and energy

.ﬂ’i%ﬁ’.‘.’i.;..;% (ﬁ%’ﬂ PVi)=0 2.7

a a HHH
5t (HHo ) + o5 [ g Gup + V.7 )] =
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H HoHy 9H; a H H,H
P, 2 (B
____H;IH‘ZIH’ aH pV;V — HH\H.H sP( + 26" H;H k"’JVk)
{
a(HIH,HaE) + L [ ng:” 3 (E + p) V,-] =0

(G J, k=1,2, 3)

where Y% is the Levi-Civita tensor,.

The system of Egs, (2,7) is closed by the equation of state,
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